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Abstract

In this project, we explore a new approach to two-dimensional shape recognition. The
method draws from literature on the Hough transform and its extensions. The methods is
shown to be invariant to zoom, translation, rotation, and partial occlusion, although not zoom
and partial occlusion simultaneously. The method is shown to be robust to distortions which
smooth the contour shape (scale space changes). Furthermore, when the method misclassifies a
shape, it chooses a shape which is most “similar” (in a human-intuitive sense) to the original.

The method is developed and evaluated on a data base of tank silhouettes and a data base
of fish silhouettes.

The computer-based version of the algorithm is shown to have a reasonable implementation
in neural hardware, and a neural-network implementation is described.
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1 Introduction

This work was motivated by a singular experience of one of the authors:

I was looking over a scene involving a number of man-made objects such as houses, fac-
tories, warehouses, and a water tower, as well as some natural objects including a river,
trees, grass, etc. In my peripheral vision, I became suddenly aware of a “straightness”
which appeared and vanished. In the instant it took my attention to shift, I realized the
“straight” thing I had observed was an accidental alignment of the top of a building,
the top of a water tower, and a bird which flew between the other two. I had detected
a straight “’edge” or “line” (we don’t need to distinguish them here), and I had done
so without setting the focus of attention (FOA).

We usually think of neural computations done without FOA as being more associated
with “hardware” or previously adapted special neural structures, as opposed to neural
processes which require FOA, which we associate with “software” or higher -level pro-
cessing. High level processing is slower, and this feature detection was fast - when my
attention shifted, the bird had barely moved. Could a receptive-field-like detector have
fired? Unlikely, because the event covered 1/4 of the visual field.

If not a receptive field, based on correlation, then what kind of neural hardware or
algorithm could produce such a rapid response? The Hough transform comes to mind.
While it is unlikely that trig functions are calculated continuously in the brain, there is
evidence that similar calculations do occur in the brain (we discuss literature in section
2).

Once the thought of the Hough transform occurs, one is tempted to ask if structures
more general than straight lines can be and are recognized by neural hardware in a
similar way - which leads us to the generalized Hough transform.

1.1 Objective

Our objective in this work is to develop a technique for shape recognition which mimics the capa-
bilities of a human while being implementable in hardware of reasonable neural complexity. This
mimicking of human capability requires at least some attention to known features of visual pro-
cessing by humans, including experimental results from neuroanatomy and cognitive psychology.
Relevant work in these areas are mentioned in section 2. However, we certainly know that, with
1010 neurons and as many as thousands of synaptic connections to each neuron, memory capacity
is certainly large in the brain. We furthermore know that computation is relatively cheap - double-
precision floating point is not available, but we are allowed a lot of low precision computation.

We thus seek an algorithm and a biologically plausable architecture which will identify individual
regions in a scene, even if those regions are zoomed, scaled1, translated, or rotated in the viewing
plane.

1Here, we distinguish between zoom or simple sampling resolution change, and “scale” as denoted by common
literature in scale-space, meaning blurring

5



With those guidelines, and the experience described above, we are motivated to follow a philosophy
using evidence accumulation, as the Hough transform does. Such a representation uses a great deal
of memory, and performs most computations by lookup and simple arithmetic.

In this report, we deal only with two-dimensional silhouette images. Thus we only consider processes
which are relatively low in the hierarchy of the human visual system. We make no claim that our
algorithm “explains” human vision, only that it is highly parallel and therefore implementable in
very fast hardware, and that it is not infeasible that something like this occurs in biological vision
systems.

1.2 Evidence Accumulation by Transform

In this section, for pedagogical clarity, we begin with a simplest description of the algorithm and
increase the complexity as issues such as nonuniform sampling occur. Furthermore, again for
pedagogical clarity, we will describe each component in both discrete and continuous formulations.

The Hough and other similar methods form accumulator arrays whose peaks indicate properties of
the scene. In this paper we initially (we will extend this in section 3) construct a two dimensional
histogram of curvature and distance from the center of gravity (GC) of the region. We make use of
this philosophy both to represent a region contour and to match shapes. We refer to the modeling
and matching process as the “SKS algorithm.”

1.2.1 Two-parameter, Discrete Formulation of the Model

Let C = x1, x2, ..., xn denote an ordered set of points circumscribing a region. For now, we assume
no occlusion, so that x1 = xn+1. Then at any point on the contour in the viewing plane, xi =
[xi, yi] we may determine its distance from the CG, di = |xi − x0|, and κi, the curvature of a
small neighborhood2 about point i, where x0 is the vector-valued coordinates of the CG. The two
parameters d and κ are chosen for their invariance to rotation and translation. We remind the
reader that although curvature is theoretically invariant to rotation, the estimation of curvature
is in fact sensitive to orientation. We will deal with this in section 3.

So for all n points on the boundary, we compute the curvature and the distance, and accumulate
(,.κ) pairs, using, for each i,

A(di, κi) = A(di, κi) + 1 (1)

After the accumulation, the array A is a model of the shape of the region. Experimentally, one
discovers rapidly that this does not work well, as we will discuss in section 3, but the description
is adequate for understanding the underlying philosophy of the approach. A bit more insight can
be gleaned by restating the algorithm in continuous form.

2Further in the paper, we will shorten this description and refer to the “curvature AT point i”
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1.2.2 Two-parameter, Continuous Formulation of the Model

The contents of the accumulator array can be written assuming both the contour and the parameter
space are continuous. In this case, an integral formulation is required. This formulation also
provides insight into the behavior of the algorithm. This formulation will be presented in detail
and discussed in section 3 We initially represent the boundary of an object by a closed contour

C(s) =
[
x(s)
y(s)

]
, where s denotes arc length, and we will henceforth use the vector notation

x = [ x y ]T to denote the position vector. For the time being, we will assume no points are
occluded and the boundary is therefore closed. We will relax this assumption later. For each value
s, one may compute the curvature κ(s) : [0, 1] → < of the contour at that point. For any particular
value of s, we may define a mapping of κ(s), υ(κ(s)) =

∣∣ υx(κ(s)) υy(κ(s))
∣∣ the magnitude of a

vector from a point where the curvature has value κ to the center of gravity (CG) of the object.
The composition υ(κ(s)) = [υx, υy]

T , unfortunately, is not invertible, since there are likely to be
multiple points on the boundary which have the same value of κ . κ thus actually indexes a density
function3 p(κ, d), denoting the density of points with curvature κ which are a distance d = |υ| from
the CG.

Since p(κ, d) represents the number of times a point on the boundary has curvature κ and is a
distance |υ| from the CG, we may compute this density function by integrating over the boundary
of the object,

p(κ, d) =
1
P

∫
s∈C

δ(κ− κ(s),d− |υ(s)|)ds (2)

where again, κ(s) denotes the curvature of the point s on the boundary, and δ is the usual Dirac
delta function. This density function will be our model for the shape of a region.

1.2.3 Model Matching

Matching a model pi to a contour Cj is possible by integrating the model over the contour. The
result will be sharply peaked if the model is consistent with the contour. The matching process
will be discussed in detail in section 3.4.

1.3 Terminology

Two terms are defined ambiguously in the literature: scale and similarity. The two definitions are
scale, in reference to a region in an image, are

• The size of the region, computed by comparing the diameter of the observed region, in pixels,
to that of some standard model of the same region. This is equivalent to zoom or magnification
or

3Although this function has many of the properties of a probability (values between zero and one, integrates to
one), we prefer to not call it a probability since there is no easily identified random process with which to associate
it.
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• The degree, σ, to which the region is blurred, assuming the observed region is the result of
convolving some “ideal” region with a Gaussian with standard deviation σ. This definition is
the one usually used in discussions of “scale space.”

The confusion occurs because if one subsamples an image (effectively using larger pixels), the
representation of a particular region is effectively blurred. In this paper, our use of the term scale
will be equivalent to magnification.

The second term which we must carefully define is similarity, specifically in it use in the expression
similarity transform. Suppose C1(s) : < → <×< is a curve in the plane, C2 is another curve in the
same space, and T is a transformation, C2 = T (C1). Now suppose under the transformation, T ,
the length of all vectors is preserved. Then one would think that T should be called a congruence
transformation by analogy to congruent triangles. If, however, C2 is a magnified version of C1,
then T would be a similarity transform, again by analogy to similar triangles. Thus, translation
and rotation (in the plane) are congruence transforms, and by extension, similarity transforms.
However, zoom is a similarity transform, but not a congruence transform. Unfortunately, one will
occasionally encounter usage of the term similarity transform in the literature where the author
really meant congruence transform.

2 Background

The Hough Transform was originally published in a patent disclosure [16], and received consider-
able attention in the Machine Vision Community. In 1981, Deans[11] recognized that the Hough
transform, applied to detecting straight lines, was equivalent to the Radon transform. That is, if
f(x, y) : <×< → {0, 1} is binary and equal to one iff the point x, y is on the contour, the integral

H(ρ, θ) =
∫
δ(f(x, y)− ρ(xcosθ + ysinθ))dxdy (3)

produces a function, H(ρ, θ) of ρ and θ in which all colinear points in x, y map to peaks. The
two-dimensional function H is referred to as the “Hough transform” or the “parametric transform”
of the edge image f(x, y).

Ballard [2] recognized that the concept of an accumulator could be used to recognize arbitrary
shapes. First, a model of each object to be recognized is built: To construct such a model, at each
point xi on the boundary, measure the angle between the tangent and the vector to the CG, (see
figure 1). Denote the vector as vi and the angle as θi. Quantize θ into reasonable-sized bins. A
table is then constructed with rows corresponding to the values of θ and on each row, a list of all
observed values of the vector vi. Matching an object to a model then consists of traversing the
boundary of the contour of the object, and at each point:

• measure the angle between the normal at this point on the object contour and the CG of the
object. Find the row in the model corresponding to this value.
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• For each vector value on the list on this row, compute where the CG should be (coordinates
of the boundary point plus the vector), and increment that point in an accumulator. The
point with the maximum number of increments is the best match.

This algorithm, called the “Generalized Hough Transform” (GHT) is independent of rotation and
translation. Invariance to translation is gained by simply referencing every point to the center of
gravity of the region. Invariance to rotation is implicit in the definition of θ which measures a local
property: angle between the local tangent and the vector from the local point to the CG. (We
refer to this angle as the local tangent orientation). The GHT is not invariant to zoom or partial
occlusion. In section 3 we provide an extended approach which is invariant to zoom and partial
occlusion, and in section 8 we suggest a new result which is even more robust under zoom. One
may choose to think of the countour as continuous, with piecewise-continuous ranges v(s), of the
vector from point s to the CG, and θ(s), the angle between the tangent and the vector v. Then,
the GHT can also be written in continuous form as

H(v, θ) =
∫
δ((v − ||x− x̄||), (θ − θ(x))dx (4)

where the vector x is the spatial coordinates of a point, θ(x) is the angle at that point, and v(x)
is the vector from that point to the CG.

2.1 Computing Curvature

Given a curve in 3-space,
f(s) = ( x(s) y(s) z(s) )T ,

parameterized by arc length, s, then the unit tangent vector τ = ∂f
∂s . The tangent vector may also

be differentiated with respect to s. The resulting vector τ ′ may be normalized by dividing by its
magnitude,

n =
τ ′

|τ ′|
. (5)

We refer to the magnitude of τ ′as the curvature, κ = |τ ′| and the vector n as the normal vector.

The curvature is invariant to similarity4 transforms, that is, any operation in the Lie group SE3.
Not only is curvature invariant to similarity transforms, it scales inversely with zoom.

Curvature is a ideal property of any curve because of its invariance to rotation and translation.
Curvature calculus and its properties are clearly defined in classical mathematics. However, the
application of these properties on discrete data is not straightforward. This is because exact infor-
mation about the continuous object is lost during the digitization process and therefore, curvature
cannot be calculated accurately. This section contains an overview of the various discrete curvature
estimation techniques found in literature. The state of the art of these methods is analyzed further
in detail, and some experiments are described in section 5.1

4A similarity transform corresponds to a rigid body motion in 3-space, a motion which does not change the length
of vectors. That is, translation and rotation, but not zoom.
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2.1.1 Continuous Curvature

In two dimensions, the curvature of a curve at a point is defined as the directional change of the
tangent at that point. There are various other definitions of curvature as defined in [33],[6].These
are described below.

Consider a curve x(s) parameterized by arc length s.

Definition 1(Second Derivative Based Curvature)

As mentioned above,

k(s) =


+

∥∥∥x
′′
(s)

∥∥∥ (Contour locally convex)

−
∥∥∥x

′′
(s)

∥∥∥ (Contour locally concave)
(6)

where x
′′
(s) is the second derivative of x(s).

Definition 2(Tangent Orientation Based Curvature)

k(s) = θ
′
(s) (7)

where θ(s) is the angle made by the tangent at x(s) with a given axis.

Definition 3(Osculating Circle Based Curvature)

k(s) =
1
r(s)

(8)

where r(s) is the radius of the osculating circle at x(s).

These definitions are equivalent in the continuous space. However, in the discrete space they
lead to different algorithms.

2.1.2 Discrete Curvature Estimation

A complete analysis of the various discrete curvature estimation techniques is available in Wor-
ring and Smeulders [33], which concludes by recommending that the best method to find discrete
curvature is by differential filtering of tangent angle using a Gaussian kernel.
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k(i) =
θ(i) ∗G′

σ

1.107
(9)

θ(i) = tan−1

[
yres(i+ 1)− yres(i)
xres(i+ 1)− xres(i)

]
(10)

xres and yres are the resampled versions of the points on the curve (x, y). 1.107 is the average
distance between two points on a discrete contour and is a multiplicative bias correction. The
resampling is done on a straight line joining two adjacent points on the curve. Worring [33] states
such a procedure will reduce the errors due to non-uniform sampling.

Vialard[32] suggests an improvement to the above method where the tangent is estimated in a
purely discrete way using Digital Straight Segments. However, the biggest problem with these
methods is the estimation of the Gaussian parameter σ. σ must be determined based on the nature
of the data.

Coeurjolly[6] proposes a method where the curvature estimation is done using a purely discrete
way using osculating circles which avoids any parameters based on the nature of the data. This
method is explained in detail below.

2.1.3 Digital Straight Segments

A Digital Straight Segment(DSS) is defined using two support lines as follows:

Da,b,µ,ω = {(i, j) ∈ Z2 : µ ≤ ai+ bj < µ+ ω} (11)

where a/b is the slope. a and b are relatively prime integers. µ is the approximate intercept and ω
is the arithmetic width.

If ω = max(|a|, |b|), then the lines are called naive lines. These lines are 8-connected lines in Z2. If
ω = |a|+ |b|, then the lines are called standard lines. These lines are 4-connected lines. The term
connected here implies adjacency. The connectivity is not absolutely necessary. A set of points are
part of a straight segment as along as they lie within the support lines. Therefore, if two points are
not connected and lie within the support lines then it is possible to find 4 or 8 connected points
joining them.

It is interesting to note that standard lines are a bit more resistant to noisy points than naive
lines because of greater separation between the support lines. Standard lines are used for curvature
estimation in our algorithm.

There are two important algorithms found in the literature to find Digital Straight Segments. For
standard lines, the algorithm is defined in [20]. Recognition of naive lines is discussed in [12]. In
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section 3.1 we describe the algorithm to find standard lines as described in [20].

2.2 Matching

Shape matching is a well-researched field documented in a plethora of publications. The author’s
text [31] provides tutorial presentation of many of these, up to 2002, and an excellent survey by
Zhang and Lu [34] brings the reader up to 2004.

The algorithm described in this paper characterizes each boundary point by the distance from the
geometric center, the curvature at that point and (optionally ) by the angle between the vector
from the geometric center and the tangent at that point. Using the Digital Straight Segments
algorithm (discussed in section 3) to compute the curvature provides the tangents as a component
of the calculation Therefore the third feature is obtained at minimal additional computation.

2.3 Wetware

Research [24][23][25] in the visual neurosciences shows this approach to shape representation is
adopted by primate cortices (in the higher visual areas, V4-IT). Connor in [8] discusses a parts
based representation of boundary fragments and documents that response of neurons in the visual
cortex of a macaque. These neurons in the V4 show sensitivity to the curvature, the radial position
and the context (connectivity to other parts).

We will base one version of our algorithm on Principal Comonents Analysis, and the reader is
referred to [22] to address the issue of biologically-plausabe mechanisms for performing this com-
putation.

3 Approach

In the current work, we have extended the philosophy of the GHT by using different parameters,
leading to more robust representations and invariance to partial occlusion.

Several variations of the algorithm were evaluated over the investigation; these will be mentioned
after the descrription of the parameters.

First, we discuss use of Digital Straight Segments to find curvature.

3.1 Algorithm for Recognition of Standard Lines

The algorithm was initially proposed in [20]. The description given below is based on [19]. The
algorithm is based on the principle that a set of points (xi, yi) are part of a DSS if:
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0 ≤ bx− ay + c ≤ |a|+ |b| − 1 (12)

where a, b and c are integers with a and b being relatively prime. The algorithm assumes that the
points are 4-connected.

1. pN = qP = (x1, y1), qN = pP = (x2, y2), a = x2 − x1, b = y2 − y1

2. n = 3

3. Repeat steps below until (xn, yn) are not DSS.

4. c = b ∗ xn−1 − a ∗ yn−1

5. rn = (xn, yn)

6. h = b ∗ xn − a ∗ yn − c

7. if 0 ≤ h ≤ |a|+ |b| − 1 : (xn, yn) is a part of the DSS.

8. if h = −1 then qN = rn, pP = qP , (a, b) = rn − pN . (xn, yn) are part of the DSS.

9. if h = |a|+ |b| then qP = rn, pN = qN , (a, b) = rn − pP . (xn, yn) are part of the DSS.

10. Otherwise, (xn, yn) are not DSS. Stop at previous vertex (xn−1, yn−1).

3.2 Estimation of Curvature and Tangents Using DSS

Digital Straight Segments can be used to estimate discrete curvature. One of the easiest and
simplest way to do this is presented by Coeujolly and Svensson [7]. Let v1 = (x1, y1) and v2 =
(x2, y2) be the end points of the maximum length DSS around point v0 on the curve. Note that v1
and v2 are also points on the curve. Let a be the Euclidean distance between v0 and v1. Similarly,
let b be the distance between v0 and v2 and c be the distance between v1 and v2.

Then, the radius of the osculating circle at v0 can be approximated by finding the radius of
circumcircle(Rc) of the triangle with vertices v0, v1 and v2.

Rc =
abc

4A
(13)

A =

√
(b+ c)2 − a2.

√
a2 − (b− c)2

4
(14)

A is the area of the triangle. Curvature at v0 is, therefore, approximated by:

k =
1
Rc

(15)
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The line joining v1 and v2 is the approximation of the tangent at v0.

We follow this approach in our curvature estimation work. Experimental results in curvature
representation and estimation are discussed in Section 5.1.

3.3 Construction of the SKS model

In this section, we describe how the invariant shape model is developed. Two versions are discussed.
The first utilizes two parameters, distance from the CG and curvature. We have also experimented
with orientation of the principal axis, which allow the introduction of a third parameter, orientation.

Denote by κ(s) the curvature at the point where the arc length equals s. At the same point, define
the vector to the center of gravity υ(s), the orientation angle θ, and the tangent angle ψ. We
observe that both the length d = |υ| and κ are invariant to translation and rotation, θ is invariant
to translation and zoom, and ψ is invariant to all similarity transforms. These angles and lengths
are illustrated in figure 1.

Figure 1: The feature space, Distance d, curvature κ and tangent angle ψ, and orientation angle θ.

In the two parameter, discrete representation, we consider the curve parameterized by l ∈ Z, then
the model of curve i depends on κ and d,

pi(κ, d) =
1
N

∑
k

δ(κ− κl, |dl − d|) , (16)

where dk = |xk − xCG| is the distance from the kth on the boundary to the CG, with N points on
the contour.

In the continuous representation of the same two-dimensional form, we think of an integral over a
contour C which has perimeter P , and p in this case is

pi(κ, ψ) =
1
P

∫
s∈C

δ(|κ− κ(s)| , |ψ − ψ(s)|)ds (17)
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The three-parameter version of the model is generated by populating the feature space by estimating
the (κ, d, θ) tuple at each point. The three features are scaled and quantized. The bin represented
by the quantized values is then incremented, just as in the two-parameter case. This is repeated for
all the points in the shape. Owing to the fact that the model determined by each and every point,
we normalize the accumulated model by the number of points to obtain a percentage representation.
The model can now be viewed as a density function. It represents the fraction of points that satisfy
a particular combination of features. The density function corresponding to the ith shape can then
be represented as:

pi(κ, d, θ) =
1
P

∫
C
δ(|κ− κ(s)|, |d− d(s)|, |θ − θ(s)|)ds (18)

where as before, the contour has a perimeter of P . Here, δ(x, y, z) is the Dirac (delta) function and
the integral is over the contour C(s) .

Computationally, any representation must ultimately be cast in a discrete form, as a discrete
contour C = {C1, C2, . . . , Cl, . . . , CN},

pi(κ, d, θ) =
1
N

∑
l

δ(|κ− κl|, |d− dl|, |θ − θl| , (19)

where now, l = 1, 2, . . . N is the (unit-spaced) distance from the starting point, and the Kronecker
delta is required. Some of the shape information maybe lost and the representation may not be truly
invertible. Quantization is a parameter in the algorithm and the resolution of the model space can be
set to make the representation as unique as possible. The resolution of the model space determines
the ability of the algorithm to generalize (and hence discriminate between similar shapes). At small
resolutions the generalization will be good but this comes at the cost of discrimination. On the
other hand at high resolutions the generalization gets progressively poor but discrimination im-
proves drastically. Higher resolutions also imply larger computational complexity (both space and
time). The resolution (100 x 100 x 180 ) was determined experimentally.

3.3.1 Model Smoothing

The delta function in Equations 17 and 18 produces a singularity which, in the discrete imple-
mentation, means that only a very few points, on a narrow locus, are incremented. This is most
easily seen in figure 2 It is also instructive to observe two versions of the same contour to notice
similarities. For example figure 3 is the same tank as in figure 2 on the left. To allow for a smoother
representation, with more generalization ability, we have two choices: we could produce an averaged
representation or a blurred representation.

To produce an averaged representation, we constructed a model for the same tank at fifteen degree
rotations, and averaged the result, taking advantage of sampling noise to provide smoothing. This
result is shown in figure 4. Superior results were obtained, however, by simply taking one model
(which is rotation invariant up to the sampling noise anyway, and applying some sort of Gaussian
smoothing filter. That is, the model could be convolved with a Gaussian kernel such as (in the
two-parameter case):

p̂ = p ∗ 1
σ
− e−

(κ−κ0)2+(d−d0)2

σ2 . (20)
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Figure 2: Models of two tanks. No averaging has been done

Figure 3: The nonsmoothed model of the same tank as the model on the left of figure 2 but rotated
by 45 degrees.

However, a simpler strategy is to simply redefine the delta function to be a Gaussian:

δσ(a, b) =
1
σ
e−

a2+b2

σ2 (21)

where we observe that for reasonable values of a and b,

lim
σ→0

δσ(a, b) = δ(a, b) .

3.4 Matching

In this section, we describe how a model produced as a two- or three-dimensional histogram may
be used to match to a shape in an invariant way. We discuss the two- and three-parameter versions
of the algorithm together in this section.
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Figure 4: The model constructed by averaging the models of a number of models, each resulting
from a pure roation. This should be compared to the left-hand model in figure 2.

3.4.1 Feature Quantization

In describing the model of a shape, we have used the term “density function,” but of course, it is
really an accumulator array – a two- or three-dimensional histogram. The 3-Dimensional feature
space is digitized into 100 bins along the curvature axis, 100 bins along the distance axis and 100
bins along the tangent angle axis. In addition, to make the representation invariant to size of
the object, the object is scaled to a uniform size prior to be binning process. In our experiments
we scaled the object such that the farthest point in the object is at 128 units from the geometric
center. This particular scaling strategy does not survive partial occlusion of that most distant point
however.

The curvature at a point is also sensitive to the scaling. Hence, along with the distance from the
geometric center, the curvature at each point is also scaled with respect to the maximum distance
of the object (In the human visual system visual data is presented at different scales and research
suggests a maximization function is computed to select the appropriate scale).

The scaling of the distance and curvature ensures that the model is independent of the size of
the object. However, it also makes the model generation and recognition processes sensitive to
occlusion of the maximally distant points.

The curvatures are scaled so that they all lie between 1.0 and -1.0. All singularities are squashed
to either extremes as suggested by [24].

The number of bins for quantization were determined after a set of experiments where
models were generated at different resolutions of the feature space. The 100 x 100 x 100
space was selected when it showed that at this resolution there was a reasonable balance
between discriminability and generalization.
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Figure 5: The twelve tanks, zoomed so that all silhouettes have the same area.

4 Data Sets

We used two data sets in this work: The first is that of a 12 tanks. We have also trained and tested
the algorithm on a data set of 1100 fish contours.

4.1 Example Models of Tanks

The tank contours are shown in figures 5 The tank images are particularly interesting for this
study because (surprisingly) they cause considerable problems for the algorithm compared to the
fish images. This is primarily due to the fact that a great deal of the SKS algorithm is dependent
on accurate computation of curvature. Since the tank images have so many straight lines, most
of the points on the contour actually have a curvature of zero, or a curvature which cannot be
accurately computed and is simply marked to “high.” Nontheless, as we will discuss in the results
section, the algorithm performs quite well.

4.2 The SQUID data base

We also tested the algorithm on the SQUID5 data base. This data base has hundreds of contours.
We used the thirty-one which are illustrated in Figure 6.

5http://www.ee.surrey.ac.uk/Research/VSSP/imagedb/demo.html, used with permission.
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Figure 6: Thirty-one fish silhouettes from the SQUID data base, used in this project
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5 Experimental Results

In this section we provide a collection of examples of phenomena which would be expected to
degrade the performance of the algorithm, and show the algorithm performs well against them. In
section 5.9, we will compare performance with other algorithms, including use of the Haussdorf
distance and invariant moments.

5.1 Curvature

In this section, we test the accuracy of the DSS curvature estimator. Eleven circles of radii 5, 10,
20, 30, 40, 50, 60, 70, 80, 90 and 100 pixels were taken and their curvature was estimated using
the algorithm. A plot of the average estimation error versus radius is shown in 7. The plot clearly

Figure 7: Average Curvature Estimation Error

shows the convergence of the average curvature to the true continuous curvature with increase in
resolution. However, the convergence is true only for average curvature. The curvature at a point
does not have asymptotic convergence. According to [10], the asymptotic convergence of a DSS
curvature estimator is still an open problem.

However, the advantages of DSS curvature estimators clearly outweigh this disadvantage. The
biggest advantage of DSS based curvature estimators is that they are independent of the nature of
the data when compared to classical techniques. The algorithm is highly parallel and requires no
parameters to set, giving very good accuracy at the same time.
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Figure 8: The match quality (normalized to 100.0) is plotted on the vertical axis. On the horizontal
axis is the standard deviation of the Gaussian noise which was added to each spatial coordinate to
cause jitter.

5.2 Degration Under Jitter

In this experiment, all tank images were compared to their own models, so performance should be
excellent, except that a random (Gaussian) jitter was induced by adding random numbers to the x
and y coordinates of each point in the image. The quantity measured is the peak intensity of the
accumulator, normalized to 100.0. This is illlustrated in figure 8.

5.3 Effect of Smoothing the Model

In figure 9, we illustrate the importance of smoothing the model. As discussed in section 3.3.1, if we
leave the model as developed by using a delta function, we obtain a model which is very crisp, and
can only be matched by a contour which precisely (under the allowable transformations), matches
the model. By replacing the model with a smoothed version of the itself, we get better generalization
and better tolerance to noise. In the figure, the horizontal axis represents the standard deviation
of Gaussian noise added to the coordinates of each point, simulating jitter. The individual curves
represent the standard deviation of the Gaussian used to replace the delta function. All curves
represent the result of matching TANKChaff with a distorted version of itself, and only reflect the
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Figure 9: Results of matching one particular tank silhouette (TANKChaff) with itself, where the
model has been blurred by a Gaussian of variance σ2.

amplitude of the match quality – higher is better.

5.4 Sensitivity to Rotation Invariance to Model Smoothing

To study the nature of model smoothing on rotational invariance, matching of a model to rotated
versions of itself were performed, under varying degrees of model smoothing. The results in figure
10 are for one tank (TANKChaff). Other tanks follow similar trends.

In figure 11, we illustrate a contour which has been synthetically jittered by adding a Gaussian-
distributed random number with a standard deviation of 3.0 to each spatial coordinate. In order to
ensure a closed contour results, it is then necessary to perform some sort of interpolation between
the jittered points. This interpolation results in local curvatures which are more an artifact of the
interpolation algorithm than the shape of the curve. Furthermore, there is no physical process
that we can think of that would produce such distortions to an image. For these reasons, we have
elected to not use jitter as a distortion in further work.
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Figure 10: Results of matching one particular tank silhouette (TANKChaff) with rotated versions
of itself. The different curves are for different degrees of model smoothing. Each curve indicates
the model was smoothed with a a Gaussian of variance σ2, where the color/σ relationship is given
on the right

Figure 11: Distortion of the contour of TANKChaff by adding a Gaussian-distributed random
number with standard deviation of 3 to each spatial coordinate.
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Figure 12: Degradation of peak amplitude with increasing contour blur. This particular graph was
made using different degrees of contour smoothing with TANKChaff, however, similar results were
found for both tanks and fish. See figure 20 for examples of contour smoothing.

5.5 Contour Blur

An artificial distortion much more realistic than jitter is contour blur. This distortion models the
effect of low-pass filtering when the only input is the contour. This is accomplished by using the
parametric form for the contour, [x(s), y(s)], and smoothing (using digital convolution) each spatial
coordinate using the same one-dimensional smoothing kernel:

[x̂(s), ŷ(s)] = [x(s)⊗ h, y(s)⊗ h] . (22)

One may accomplish blur in two ways: by using a large convolution kernel, say a Gaussian with a
variance of 10.0, or by using a small kernel like a Gaussian with a kernel of 1.0, and repeating that
smoothing operation numerous times. The second of these operations is reminiscient of a diffusion
process which occurs over time. In fact, since the Gaussian is the Green’s function of the diffusion
equation, this is exactly correct. using the small kernel models diffusion by a short period of time,
and repeating it is equivalent to simply using a large variance kernel.

Figure 12 illustrates the degradation in performance in matching a contour (TANKChaff) with
blurred versions of itself. All tank contours showed similar behaviors.
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Figure 13: Each tank contour, after zooming down to 25% of original size or up to 150% of original
size is compared with the model of itself.

5.6 Scale

In Figure 13 we illustrate the effect of scale on representation accuracy. In this experiment, each of
the tank models was zoomed, down to a minimum of 25% of original size (in each dimension), and
up to 150% of original size. The zoomed version of the contour is then matched against the model
without change.

5.7 Partial Occlusion

In figure 14, we display and example of a partically occluded tank – matched against itself in the
left image and against a different tank in the right image. Clearly the image on the left, the good
match, produces a higher and sharper peak.

5.8 Similarity Detection

One of the desirable properties of the algorithm is its ability to detect similarities between shapes.
Since the algorithm involves encoding the structural information (curvature) of a shape relative
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Figure 14: In the left figure, a contour (TANKChaff) with approximately 70% occlusion is matched
against an unoccluded model of the same contour. The sharp peak is clearly seen. In the figure
on the right, the same partially occluded contour is matched against a model of a different tank
(TANK2). It is clear that the accumulator on the right does not possess the sharp peak which
identifies a good match

to a set of global features (principal axis and geometric center), it is expected to produce similar
models for shapes with similar structure. In the previous sections the ability of the algorithm to
discriminate between somewhat similar shapes (all tanks) has been documented. In this section the
ability of the algorithm to detect similar shapes is investigated. A formal evaluation of the output
of the algorithm as a shape metric is still under consideration. However, preliminary evaluation of
the algorithm in this regard is presented here.

The SQUID data set was sampled and 31 contours were selected randomly. Models were generated
for each of the contours. Next, the entire data set of 1100 contours was matched against the
models. The top five matches for each model were isolated. An artificial threshold of t was set and
the number of contours with peak accumulator value above t for each model was calculated. Some
of the matches are shown in figures 15 - 16. Table 1 shows the number of contours (of the total
1100) with matches above the threshold t for different values of t.

Table 1 shows the number of contours with accumulator peaks higher than a particular threshold
(t) when matched against each of the 31 models. Some of the models are more “similar” to other
shapes in the data base, as can be clearly seen from the table. For example contour kk492 over 100
contours with an accumulator peak of greater than 60. The same is not true for other contours.
The contour kk127 had all peaks below 50 (excluding itself ). In order to attain a qualitative feel for
how similar some of the matches are the the top matches for some of the models are shown in figures
15-16. In all the figures the shapes that show a high degree of match (in terms of accumulator
peaks) are visually very similar to the model. For example, all the shapes on the right of figure 16
are sea-horses. Similarly, all the shapes on the right of figure 15 look like sting rays, demonstrating
the ability of the algorithm to detect similarity between shapes.
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Figure 15: Best five matches (black contours) from the SQUID data base for the model (white on
black background) of contours kk87 and kk732.

Figure 16: (Left) Best five matches (black contours) from the SQUID data base for the model
(white on black background) of contour kk942. (Right)Best three matches for contour kk779. All
other matches were below the threshold of 60
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Model t = 90 t = 80 t = 70 t = 60 t = 50
kk5 1 1 5 66 289
kk19 1 1 3 28 135
kk30 1 1 2 31 80
kk42 1 1 1 12 22
kk72 1 1 9 48 183
kk83 1 1 5 78 384
kk87 1 5 16 31 48
kk100 1 1 1 12 162
kk127 1 1 1 1 1
kk184 1 1 1 1 1
kk209 1 1 1 3 58
kk250 1 1 1 4 17
kk263 1 1 3 7 34
kk273 1 2 9 38 105
kk310 1 1 1 12 86
kk378 1 1 2 5 19
kk430 1 3 8 36 136
kk464 1 1 1 3 14
kk473 1 1 1 1 5
kk480 1 1 1 7 183
kk495 1 2 8 138 445
kk502 1 3 25 122 359
kk558 1 3 6 50 231
kk676 1 1 1 1 5
kk689 1 1 7 50 210
kk717 1 1 3 22 169
kk732 1 8 11 16 29
kk766 1 4 31 146 370
kk779 1 1 2 3 19
kk810 1 1 5 33 234
kk942 3 5 33 136 366

Table 1: The number of matches above the threshold (columns) for different models (rows) when
the 1100 contours of the SQUID data base were matched against the models.
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5.9 Comparison with Other Shape Matching Methods

To date, we have only compared the performance of the SKS algorithm with use of the Haussdorf
distance [1][3] and with the Hu[21] invariant moments. Since the Haussdorf distance is not invariant
to congruence transforms, and the SKS algorithm is, this is not a fair comparison – our algorithm
is much more general. However, if we restrict the comparison to only untransformed images, we
can still evaluate the performance to some degree. Figure 17 illustrates how the Haussdorf distance
varies with Gaussian jitter. Observe that the Haussdorf distance is relatively immune to Gaussian

Figure 17: Haussdorf distance between Tank 1 and a distorted version of itself, as a function of
jitter.

jitter, for small values of jitter, and is linear with the jitter. This is probably an artifact of the way
we jitter the image, by randomly moving the points, but then interpolating between them.

5.9.1 Matching as a Function of Contour Smoothing

The thirty one shapes of figure 6 were used to construct the 31 corresponding models. Then, the 31
contours were smoothed using Equation 22, and matched against each of the models. The correct
classification rate is shown in Figure 18. We observe that random guessing would produce a correct
classification rate of 3%. To get a feel for the distortion introduced by contour blur, we provide the
contour of the first fish image (Figure 20) after 5000 and 10000 iterations of smoothing. Figure ??
provides a comparison of the SKS algorithm and the Hu invariant moments as a function of contour
blur. The performance of the Haussdorff distance is also included in the graph, but we remind the
reader that the Haussdorf distance is not invariant to zoom, or rotation. We observe that the SKS
algorithm is sensitive to contour blur, but provides significantly higher accuracy rates, often twice
as good.
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Figure 18: Percentage of correct classifications as a function of contour blur

Figure 19: Left: The fish contour blurred by 2000 iterations. Right: The same contour after 6000
iterations
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Figure 20: Performance of the SKS algorithm with a maximum-likelihood classifier using the Hu
invariant moments.
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6 Biological Computation

In this section, the components of the algorithm are discussed and architectures are proposed
for performing the requisite computations. We specifically seek architectures which are plausable
biologically.
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The philosophy behind the SKS algorithm, developed in section 3, is heavily influenced by the
working of the human visual system. In addition to developing a robust and invariant representation
for shapes, this project seeks an explanation of how humans recognize shapes. One of the significant
aspects of the SKS algorithm is that it is highly parallel. All the elements of the algorithm can be
implemented on a parallel architecture like a neural network. The curvature computation algorithm
is local to the object boundary and, except for second-order noise effects, independent of orientation.
The feature vector computed for each point is also independent of the process of calculation of
feature vectors at other locations.

In this section a neural network architecture that implements the algorithm, developed and tested
in the previous sections, is discussed. First a summary of the visual pathway and the processing
of shapes in the human visual cortex is presented. This is followed by a discussion of some neural
network architectures that are present in literature. The Standard Model [26][27][30][5][29], an
architecture for shape processing developed at the Computer Science and Artificial Intelligence
Laboratory, MIT and the “VisNet,” proposed by Rolls and Deco in [28] are discussed here. Both
are hierarchical neural network implementations of the visual pathway. They achieve scale and
translational invariance and closely mimic the behavior of actual cortical recordings of cells in the
higher visual areas (V4 and IT). Finally, an augmented model that ensures invariance to rotation
and brings about an object centered representation of shapes is proposed.

6.1 The Visual Pathway

The processing of shape information starts very early in the visual pathway (figure 21). The
receptors (cones in this presentation of the mode) on the retina are packed densely in a region
called the fovea. This region is normally also focus of attention. The receptors are connected to
the bipolar cells in the retina either directly (in an excitatory role) or through horizontal cells (in
an inhibitory role)[28]. This configuration generate center surround ON and OFF receptive fields.
A detailed description of this architecture and the processing is present in [17][28]. The bipolar
cells feed into the retinal ganglion cells which in turn feed through the optic nerve onto the lateral
geniculate nuclei(LGN).

Retinotopic mapping, in which the geometric positioning of cells corresponds to light sensors in
the retina, is maintained through the LGN to higher visual areas. The LGN contains two kinds
of cells - Magno-cells (M-LGN) and Parvo-cells (P-LGN). Of these cells, the P-LGN are primarily
responsible for communicating shape information. Both these layers of the LGN feed into different
regions of the primary visual cortex (V1). Since the focus of this description is on shape processing,
only the section of the visual cortex relevant to shape is discussed from here.

6.1.1 V1

The primary visual cortex constitutes several layers (hence the name striate cortex ). There are rich
vertical connections between these layers with very little horizontal or diagonal spreading between
layers. This would suggest that most of the processing in the V1 area is local and it clearly is
not the seat of perception [17]. There are three types of cells in this visual area. Simple Cells
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Figure 21: A block diagram of the Visual Pathway.
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respond best to bars or edges passing through the center of the receptive field corresponding to
that cell, and having specific orientations. They are tuned to four different orientations with a
tuning window of 45o [28]. They are said to arise out of the spatial summation of ON and OFF
center cells[17][28]. Research by De Valois and De Valois also show that these cells are sensitive to
the spatial frequency of the visual stimuli[28]. These properties of the Simple Cells are essential
to understanding their implementation using Gabor spatial filters in later sections. Complex Cells
are also sensitive to oriented bars but they show some translational invariance. The bars can be
present anywhere in their receptive field. Hubel [17] proposes that this response of complex cells is
due to the integration of the responses of simple cells with similar orientation tuning but different
(adjacent) positions in the visual field. End Stopped Cells are the third type of cells present in the
V1 area. They are sensitive to curves with specific curvatures and properly oriented lines of fixed
lengths.

The cells in V1 are arranged in “hypercolums” [28]. These “hypercolumns” are responsible for the
processing of visual information from one specific area in the visual field. They contain columns
of neurons tuned to a particular orientation with multiple columns representing the four different
tunings. This is important because the retinotopic mapping is still maintained and the different
hypercolumns can be viewed as tiny processors of local shape information.

In [28] it is suggested that V1 layer neurons “may function collectively to incorporate contextual
information from outside their classical receptive fields and in turn serve pre-attentive visual seg-
mentation”. This is important to the implementation of the neural network architecture for the SKS
algorithm, because global shape information like the principal axis may require such mechanisms
to enable its incorporation to the processing of contours.

6.1.2 Extra-striate Processing of Shape Information

There is very little understood about the behavior of brain circuits external to the striate cortex.
However, some studies [29][23][24] have shown that these neurons are sensitive to combinations of
features from their afferent layers. The extra-striate areas primarily involved in handling shape
information are regions of the V2, V4 and the inferior temporal cortex (IT). The cells in the V2 are
known to be sensitive to low order combinations of the afferent cells from the striate cortex (the
primary visual cortex) [28][29]. These combinations represent the growing complexity of features
along the visual hierarchy. They also represent the growing invariance of this architecture to
small translations. This has been replicated by architectures like the VisNet [28] and the Standard
Model [26]-[29].

The V4 is known to be sensitive to high order feature combinations [24][8]. There are cells in the
V4 that are tuned to simple features like oriented line segments and others that are tuned to more
complex curvatures. In [8] Connor summarizes his research into neurons in the V4. He shows that
these neurons are sensitive to arrangement of shape features relative to the object center (which
implies an object-centered coordinate system). The V4 neurons are shown to be sensitive to angular
position of a feature, the normal at the feature, the curvature of the feature and the context (the
curvatures of the segments adjacent to features). These cells also show some invariance to object
size and object location (translation). They also have larger receptive fields when compared to
the cells lower in the hierarchy. These properties are of significance to the the SKS algorithm and
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also the neural network architecture. Connor [8] hypothesizes an object recognition framework
that is a hierarchical feed-forward network with neurons sensitive to feature combinations of their
afferent layers. This network not only encodes what features are present but also their relative
spatial arrangements. This hypothesis along with the research of Poggio et al. [26]-[29] and Rolls’
VisNet[28] were essential to the development of the neural network architecture to implement the
SKS algorithm.

The final higher visual area that is significant to shape processing is the Inferior Temporal cortex
(IT). The neurons in this area of the visual pathway are sensitive to moderately complex features
[28]. Neurons that are sensitive to similar features are clustered together and are involved in
competitive inhibition to ensure discrimination. These neurons also exhibit significant translational
invariance [28] in addition to scale invariance of up to two octaves [29]. Poggio et al. [29] argue
that this layer contains several view tuned neurons whose responses are pooled to produce view
independent neurons that identify specific objects. Additionally, Rolls [28] has documented that
this representation of objects in the IT is distributed as this enables the encoding of a significantly
larger number of shapes. This also ensures a graceful degradation of performance in the presence of
noise. A significant finding about the view independent cells in the IT [28] is that a set of neurons
were shown to fire even when the object presented was completely inverted. This suggests an object
based framework for recognition in these areas.

6.2 VisNet and the Standard Model

Several architectures for invariant object recognition are present in literature [29][28][14][4]. Of these
neural network implementations, those of Poggio et al. [29] and Rolls [28] present a biologically
plausible framework for processing shapes (2D and 3D). In this section these two models of human
vision are presented and discussed. Both are feature hierarchies and exhibit strong invariance to
translation and scale changes. Both are intent on explaining the processing of shapes in the visual
pathway using biologically plausible circuits. They both are feed-forward networks with absolutely
no top-down feedback.

6.2.1 VisNet

VisNet is a neural network architecture for shape recognition developed by Rolls and Deco and
described in their book [28]. The general philosophy involves a feature hierarchy going from simple
(oriented lines) to complex (curves and corners) features. The network has 4 layers of neurons
that learn and classify using mutual inhibition (over short ranges) and competition. The units
from one layer converge onto neurons in the higher layers. In other words several neurons in
the lower layers are afferent on neurons in the higher layers. This implies an increasing size of
receptive fields as we go higher up in the network. The input to the network is from a set of
2D spatial filters implemented as “Difference of Gaussians” (DOG). These are intended to mimic
the orientation and spatial frequency sensitivities of simple cells in V1. Rolls and Deco do not
assume any preexisting affinity for any combination of features. The network learns through self-
organization to represent the entire feature space. Feature combinations are not replicated at all
positions. Instead a representative sample of images with all possible features is learnt by the lower
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layers of the network. These images are presented at all possible positions in the input layer. The
higher layers learn feature associations specific to objects and do not bother with translational
invariance.

Rolls and Deco also suggest a trace rule for learning. This is similar to Hebbian learning except there
is a temporal aspect to it. This temporal aspect to learning brings about some of the invariance
to scale and translation. This form of Hebbian-like learning also makes the network biologically
plausible. Additionally, the competitive nature of learning also provides a distributed representation
similar to that exhibited by neurons in the IT. Overall, this hierarchical representation exhibits
the ability to differentiate between different spatial arrangements of features and is similar to the
behavior of cells between the V1 and IT layers of the ventral pathway.

6.2.2 The Standard Model

The Standard Model [26][29] is a hierarchical model of shape recognition developed by Poggio et al.
It is a strictly feed-forward architecture and seeks to explain the first 150 ms of vision. It is similar
to the hierarchical model proposed by Fukushima [14] in that there are alternating layers of simple
and complex cells that learn feature associations. In the Standard Model, these two types of cells
are responsible for two distinct tasks, but unlike the VisNet, their roles are predefined and do not
emerge out of self-organization. The simple cells (S) are responsible for template matching. Each
cell is active when the features in the object at a particular spatial location have high correlation
with the feature that the S cell is tuned for. At the very base the S cells mimic the behavior of the
simple cells in V1. They are sensitive to oriented line segments. The entire space of orientations
is covered by cells with a tuning peaks at 45o intervals. In the Standard Model 2D Gabor filters
serve as inputs to this layer of S-cells. These cells are sensitive to location of the oriented bars and
can be assumed to be part of the “hypercolumns” that are found in V1. The complex cells (C)
are responsible for the invariance characteristics of the network. They achieve this by pooling in
inputs from S-cells that are tuned to the same feature but located at slightly different positions in
the visual field. This operation is achieved by a softmax of inputs from the S-cells layer.

These layers of C and S cells are alternated to produce features of increasing complexity while
ensuring a small degree of invariance to scale and translation. A complete discussion of this model
is presented in [29]. In the same paper the authors discuss the biological plausibility of these
operations of shape tuning and softmax. They argue convincingly that circuits for these operations
are biologically plausible. This hierarchy of alternating layers agrees with neurophysiological data in
literature. Most significantly, the layers at the top of the hierarchy (C2) show considerably similar
sensitivities as cells in area V4 as reported in [23][24]. The authors state [5] that this hierarchy
results in an object centered representation of features as hypothesized by Connor [8]. The results
presented confirm this claim.
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7 The SKS Neural Network Architecture

The neural network architecture proposed in this section is influenced by VisNet and the Standard
Model. The philosophy of the SKS algorithm is to utilize global characteristics of a shape to
over come rigid similarity transforms and use local features to arrive at a shape description. The
SKS algorithm brings about significant invariance to rotation, scale and translation. In addition
it also exhibits robustness to noise and blur. Translating the serial computations of the algorithm
discussed in section 3 to a parallel architecture like a neural network is simplified by the fact that
the modules of the algorithm are inherently parallel. The DSS algorithm for calculating curvature
is also remarkably parallel. In this section the specifics of the architecture to implement the SKS
algorithm in a neural network are discussed. No simulations of the proposed neural network were
carried out.

7.1 Description of the Architecture

The SKS architecture inherits some prominent features from the VisNet and the Standard Model.
In addition to the “what” information that is processed it also seeks to incorporate an object-based
frame of reference to arrive at a consistent and invariant representation of shape. The Standard
Model achieved scale and translation invariance by utilizing tuning functions and the pooling out-
puts over spatial location and scale. Rotational invariance is not discussed. Different view-tuned
neurons are present for different views of the object and intermediate views are determined by
graded response of these neurons.

In our hypothesis however, it is proposed that view-tuned neurons exist but they are for depth-
rotated analogues. The presence of different neurons for objects rotated in the plane is inefficient
because the same set of features are “visible” to the shape processors. Instead, we observe that
humans require longer to process rotated images and make more errors in recognition, and this
degredation in performance is a monotonic function of rotation angle[18]. With this observation,
we propose that the parallel, high speed, “wired” sort of processing is minimally rotation invariant.
It is possible to propose a “biologically plausible” architecture that could implement this kind
of processing. The hypothesis is influenced by the fact that vision involves the perception of
“orientation” of an object (usually in terms of the principal axis or the axis of elongation) in
addition to its spatial location (in terms of its geometric center).

The neural network architecture hypothesized has the following features (figure 22):

• The architecture is a hierarchical, feed-forward, multilayer, competitive neural network with
mutual inhibition within a layer. The alternating simple(S) and complex(C) layers design of
the Standard Model is retained. In essence it is a feature hierarchy going from units sensitive
to oriented edges to complex stimuli.

• The input to the network is a 2D Gabor filtered image, simulating the behavior of orientation-
sensitive retinal receptive fields. The filtering of images using 2D Gabor spatial filters is
discussed in [9].
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Figure 22: The SKS Neural Network Architecture. Alternating layers of Simple and Complex cells
produce cells that are sensitive to low order combinations of features and at the same time a degree
of translational and scale invariance. Additional layers can be added after C2 in order to arrive at
more complicated features and larger receptive field sizes.
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Figure 23: Sigma Pi connections gate the connections between the C2 layer and the M-Layer. Each
cell in the M-layer is connected to equivalent cells in the C2 layers. When an afferent cell fires
the input is communicated to the cell in the M-Layer that is consistent with that assignment of
principal axis.
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• The architecture presented hypothesizes that the feature-specific information and the “global”
information with regard to a shape are processed in parallel. After one layer of alternating S
and C cells, the output of the C layer branches out into two distinct branches. One branch
is for processing the orientation center of the shape (F layer). The second branch continues
the process of combining the outputs of layer C1 to produce low order feature combinations
in layer S2.

• The C2 layer is equivalent to cells in the V4. This in turn is equivalent to the “model” space
discussed in section 3. The cells are sensitive to angular position and curvature (added to
distance) relative to the object center. However, the angular position here is relative to the
viewer coordinates.

• The M-Layer, in figure 23, is a transform space of the C2 layer. Considering the C2 layer
to be parameterized by distance, angular position and curvature of a segment [23][24][8], the
M-Layer is similarly parameterized. Each cell in C2 tuned to a particular feature at particular
distance from the object center is connected to each and every cell tuned to the same feature
at the same distance from the object center (but at different angular positions) in the M-
Layer. These connections are gated by the outputs of the F-layer. For a particular orientation
of an object a combination of the firing of cells in the F-layer and the C2 layer will produce
(related) activity in the M-Layer.

• The M-Layer then communicates by simple feature combination a view (rotation in depth)
dependent representation to the IT.

The critical additions to the architecture are the M-layer and the F-layer. Hinton in [15] recom-
mends an architecture to enable invariance to similarity transforms by modulating shape descrip-
tions by object-based frames of reference.The F-layer computes an object-based frame of reference
relative to which the object description is communicated to the IT (through the M-layer). The
significance of the F layer is shown in figure 23. The F-layer outputs gate the neural connections
between the V4 (C2) layer and the M-layer. The gating enables only consistent object descriptions
to pass through to the cells in the IT. Object descriptions in which there is correlation between the
principal axis and the arrangement of features (segments of different curvatures) relative to this
framework are considered to be consistent. This gating is accomplished by “biologically plausible”
sigma-pi connections between the two sets of neural circuits [28]. The M-layer is a transform space
where all features are transformed relative to a reference frame defined by the principal axis. Each
view dependent neuron is activated by an object description corresponding to combinations of fea-
tures from the M-layer. The outputs of the view-dependent neurons are pooled for the activation
of view-independent neurons in higher areas of the IT.

7.2 Equivalence to the SKS algorithm

There is considerable similarity between the SKS algorithm and the neural network described above.
There are parallels that can been drawn between the modules of the SKS algorithm and this neural
network. The two are philosophically equivalent.

In model building using the SKS algorithm, the first steps of processing include determining the
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geometric center of the contour and, in some implementations, the principal axis. This is accom-
plished in part by the alternating S and C layers of the hierarchy, as they achieve a degree of
translational and scale invariance. The determination of the principal axis is done by the F-layer.
The inputs to this layer are the outputs of the C1 layer. The F-layer is modeled as a densely
connected layer of neurons in which all the feature specific cells of C1 are connected to N neurons
corresponding to N finely tuned orientation tuning functions spanning the range of orientations
of the principal axis. The F-layer connections can be assumed to be hard wired as of now. For
each contour a sparse firing of the N neurons of the F-layer indicates a principal axis of a specific
orientation. The outputs of these N neurons are used to gate the connections between the C2 layer
and the M-Layer. In the SKS algorithm the contour is transformed to the new frame of reference
defined by the principal axis. In the network the model space equivalent of the contour is trans-
formed instead. These two are equivalent operations. An assumption made here is that the gating
circuits and the F-layer circuits are hard-wired (either genetically or during development).

In the SKS algorithm, curvature is determined utilizing the digital straight segments (DSS) al-
gorithm. This algorithm can be implemented in a parallel architecture. The functioning of the
feature hierarchy can be viewed as curvature filtering [30][29]. Along the hierarchy low order com-
binations of afferent features produces sensitivity to more complex stimuli (like curves of varying
curvature). In the SKS algorithm each and every point is treated uniquely and technically an
infinity of “features” (different curvatures) is present. In the network however, these combinations
are dictated by visual experience and the statistics of real images. Additionally, graded response
of different features effectively provides a continuous feature space. The model space in the SKS
algorithm is similar to the C2 layer which is parameterized by curvature of the feature, angular
position and distance from the object center. The significant difference is in the matching process.
Although there is no explicit accumulator present in the network discussed above, the accumulator
can be viewed as 2D spatial correlation between the models of two contours. This correlation is
implemented in the connections between the neurons of the M-Layer and the view-tuned neurons
of the IT. If no depth rotation is assumed, these view-tuned cells should be sufficient to represent
and classify the database of shapes presented in section 5.

In this section, a neural network architecture for shape recognition is proposed. It is largely
derivative from models developed by Poggio and Riesenhuber , and Rolls and Deco. The models
have been augmented with additional layers (F-layer and M-layers) that enables a rotationally
invariant representation of shapes. There are distinct representations for depth rotated views as the
feature sets that are visible are not only different but they also have different spatial arrangements.
The final neural network developed is influenced by the SKS algorithm and is philosophically similar
to it. Implementation of this network is beyond the scope of this report.
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8 Conclusion and Extensions

In this project, we have explored a new approach to two-dimensional shape recognition. The
method draws from literature on the Hough transform and its extensions. The methods is shown
to be invariant to zoom, translation, rotation, and partial occlusion, although not all simultaneously.
The method is shown to be robust to distortions which smooth the contour shape. Furthermore,
when the method misclassifies a shape, it chooses a shape which is most “similar” (in a human-
intuitive sense) to the original.

The computer-based version of the algorithm has been shown to have a reasonable implementation
in neural hardware.

We need to finish the comparison with classifiers based on invariant moments. This work is under
way at this time.

There is a great deal more to be done.

The neural network version of the algorithm needs to be simulated carefully, and its performance
evaluated.

The current implementation of the algorithm is completely invariant to rotation, but this is not
necessary. Observations of humans performing shape recognition tasks suggest that rotational
invariance may be restricted to a few degrees, but invariance to partial occlusion may be more
important. There are probably ways to accomplish this. For example, Edelman and Poggio [13]
show that models can be developed which do not depend on the center of gravity but on a collection
of reference points, where each reference point is expressed relative to other reference points. Such
a philosophy may allow simultaneous zoom and partial occlusion.

We know how the lower levels of the human visual system work: the behavior of retinal and
higher-level receptive fields. The SKS algorithm could be developed in terms of the outputs of
such fields, rather than the current point-based approach, probably with considerable gain in speed
performance.
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